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Executive Summary

Purposeof GFLOWSstage3 project

Groundwater in remote arid areas of South Austridiaften the only available water resource to support
the livelihood of communities as welas to support opportunities for future watatependent
industries/enterprises The third stage of the Goyder Iind\ (G dzi S Q&  C et Ouibéck Watef 3
Solutions (@-LOWS) research progrdotiowed on from the successful first two stag@Silfedder & Munday
2013, Gilfedder et aR015)andaimedto helpreducesignificant risks faced when considering wateo@se
development proposals for thee areas allowing for more informed decisiemaking and prioritisation for
more targeted drilling to secure water sujgs

The GFLOWSStage3 project has developed and appliesh integrated approach to theneasurement,
analysisandmodellingof geophysical, geochemical and hydrogeolodg@ehniques, which aim to help more
efficiently and effectively target groundwater resourcesiiremote part ofarid Australia.

The projecthas focused ogroundwater inthe Anangu Rjantjatjara Yankunytjatjara (APY) Landdich isa
remote arid area in northwest South Australiankestigated theole thatlarge buried palaeovalley systems
canplay as potentiagroundvater resourcs for community and enterprisesG-FLOWSStage3 involved a

[ 2

collaboration between CSIRO, Flinders University and the South Australian Department for Environment and

Water.
Thisfinal summaryreport of the GFLOWStage3 projectoutlines the workundertakento:

1 Mappalaeovalley locatioswith significantly improved accuraegross the APY Lands
1 usemultiple lines of evidence to investigapalaeovalleyevolution, aquifer character angalaeovalley
architecture groundwvater chemistryrecharge andlow.

These combined effortked to the refinement of &ydrogeological conceptual understandioigpalaeovalley
drainage in the APY Lands, as well as a more widely applmatlabilistic modelling approadi provide a
framework fordata-driventargetingfor drillinglocations.

Palaeovalley location

Palaeovalley locatigrgeometryand size weranore precisely mappedhrough the acquisition, processing
and inversion o&irborne electromagneticAEM data fromacross the APY Landhesealatarevealed areas

of deep transporteccoverthat filled ancient valley systems which developed in the area in the mid to late
Mesozoic (~65 million years agdis cover material is more electricallyconductive than the underlying
basement rocksaaind provides a god basis for using AEM data as a means for mapping its extent and
thicknessThere is alspotential to map variations within the palaeovalgwhichisuseful forhelpinglocate
compartmentalised aquifersThe AEM dataset also proved to be an idealliedtfor the development of
machine learning approaches in palaeovalley mapping.

Palaeovalley architecture

Palaeovalley architecture waisvestigatedusing a range of techniques as part of a large grelaskd and
borehole data collection programme, involving drilfiogring and multiple on-ground and borehole
geophysical techniques to hepipportand confirm the interpretation of the AEKta

Palaewalleyarchitectureis an important aspect of understanding the water resources they contain. The
drilling program inG-FLOWSstage3 provided an opportunity to obtain information on thefill materials

and hydragedogic properties down through a largelpaovalley. Drilling in the Lindsay East Palaeovalley (at
Site DH1) has provided detilinformation at this location.

iv | GFLOWStage3: Final summary report



Recharge andlow

Water chemistry environmental tracer analysesnd groundwater modelling were undertaken to better
understand theaate of groundwater recharge and tmeovement of water through the landscapkne review

and reinterpretation of groundwater level, chemistry and environmental tracers from previous studies
integrated with the geological modelling and findings from the interpretation of new and existing geophysical
data has proved invaluable for confirming and refining knowledge of groundwater flow processes. The
collation and reinterpretation of environmentélacer data with more stringent constrainteas helpedo
confirm and refinesome previous characterisation of groundwater recharge and flow proceasddo

refine groundwater recharge estimates for aquifers in key hydrogeological @ritsindwater rebarge was
estimated to be between @0 mm/year on the ranges and between 0.5 and rh@n/year on the alluvial
plains.Groundwater flow and age modelling were undertaken in order to test different plausible conceptual
models of the groundwater regime within the palaeovalley to aid the understanding of the available
groundwaterresource Groundwater ages in the upper part e valleyfill sequences wre ~900 years, but

over 8500 years in the deeper parts of the palasiays.

Hydrogeological anceptual understanding

The combined geophysics and groundwater hydrology wotkkbOWSStage3 builds on the earlier work
in the regionby Munday(2013), Parsekian et al2014) and Gogoll(2016. Thisexisting workwas coupled
with findingsfrom the currentstudy, to adapt and refinethe conceptualunderstanding of palaeovalley
drainage in the APY Lands

Probabilistic modellingapproach

A probabilistic modelling approach was developed as a framework for groundwater prospectivity mapping.
The Groundwater Knowledge Integration System (GKit8jdes a stochastic framework for groundwater
prospectivity mapping based on an explicit défon of sustainability requirements. It allows iterative
updating of conceptualisation as new information becomes available. The level of confidence in the
prospectivity estimate is expressed as a probability of sucddémsmost attractive regions forgundwater
production in the APY Lands are associated with palaeovalley systems. Outside the palaeovalley systems,
prospectivity can also be high, provided drilling targets both the surficial and deeper aquifer.

Recommendations

GFLOWSStage3 has clearly shown the benefits from the application of AEM surveys for providing
understanding of the hydrogeology atrange of scales, botkgionaland finer.This includes spatial mapping

of key hydrogeological unitas well agnapping the sptial extent and thickness of both alluvium/colluvium
and palaeovalleys which are key targets for water resource exploration.

Localised drilling and groundased geophysical investigations such as those conducted on the Lindsay East
Palaeovalley have furdr characterised the hydrostratigraphy and nature of the groundwater present, the
AEM survey provides increased confidence that these findingsbeaextrapolated to other areas of
alluvium/colluvium and palaeovalleys, such as the Lindsay West PalaeoVakgyoject has demonstrated

the potential of different hydrogeophysical techniquesitetter understandthe nature of the groundwater
present in the Lindsay East Palaeovalley system

The GKIS provides a systematic and transparent framework to intetrat@available information into
guantities relevant to water resource management. The prospectivity maps can easily be updated as new
information becomes available and allows to extrapolate to data poor areas. It is recommended that the
prospectivity mapsantinue to be updated as new information becomes available and the hydrogeological
conceptualisation further evolves.
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1 Introduction

Groundwater resources in remote arid areas of South Australia such as the Musgrave Reoeitice only
available water resources to support the livelihood of communities as well as economic development.
However, the arid climate of the province combinadith a geological setting dominated by crystalline
basement at shallow depths presents a hydrogeological environment where both groundwater recharge and
storage are low. For this reason, over the past two decades several important geological and hypdjiogeol
studies varying from desktop analyses, drilling investigations, geophysical surveys and groundwater quality
and resource assessments have taken place. These studies, while varying in nature, have all contributed to
evaluating the opportunities andsks for future groundwater resource development in either isolated parts

of the province or across extensive areas. However, given the remoteness, groundwater resources in large
parts of the province remain poorly mapped and characterised, while demarmfiomunity water supplies

is ongoing.

1.1 Purposeof the GFLOWStage3 project

The Departmentor Environmentand WaterQ &acilitatingLongterm Outback Water Solutions (FLOWS)
Initiative seeks to address an essential step on the critical path to delivStatg@ Economic Priority 1:
Pyf201Ay3 GKS FdzZf LRGSYGAlrt 2F {2dz2iK ! dZAGNI f Al Q&

Water is a critical resource in ensuring a healthy population and maintaining a vibrant agricultural sector but
it is also an integral rawnaterial for mineral exploration, mining and processing. The identification,
characterisation and access to suitable water resources for exploration and processing is essential for the
minerals and energy resources sector and sits at the heart of mahg oélationships between the minerals
industry and communities.

ThisGFLOWStageo LINE 2SO0 Kl a adzlllR2NISR GKS {2dzi K ! dzi G NI ¢
define and quantify groundwater resources in key areas of the state including prarigral prospective
zones as identified in the South Australian Regional Mining and Infrastructure Plan 2014.

TheG-FLOWSstage3 project has delivered new data and informatimgardingthe location and extent of
groundwater resources in the Musgrave #rae. This will help to eliminate some significant risks faced
when consideringdevelopnent proposals for the regiorallowing for more informed decisiemaking and

robust feasibility studies by potential developers and investraddition, it wilkeduce project assessment

times, contributing substantially tecormmic outcomes inSouth AustraliaThis proposal was specifically
designed to ensure the progress of economically viable mining developments are not impeded by a lack of
information on suitablevater supply sources in terms of quantity, quality and cost. The work program was
driven by advances made though previous Goyder Institute research and integrates with the South Australian
D2SNYYSyiQa tftly ¥F2N Ichifedve §ado domplehertsie bagdndldeseédrch y ot
and collaborative efforts of the Geological Survey of South Australia (GSSA), particularly insttienitilf
regional geophysical surveys for exploration under deep cover, data integration and 3D and 4[Lcgkolog
modelling.

The airborne electromagnetic (AEM) geophysical interpretation techniques developeddaRb@WStage

1 project have already been applied the Department for Environment and WatdDEW to identify more
secure groundwater supplies for a number of aboriginal communities in the Musgrave Provinceriarige A
Pitjantjatjara Yankunytjatjara (APY) Lands. Gie.OWStage3 project has provided additional information
and interpretation thatwill be helpful in realising the potential for the provision of enhanced groundwater
supplies to remote townships and communities outside of the resources sector.

This report providesa summay of the work undertaken with theG-FLOWSStage3 Project, inclding
examples of key outputs (maps), and a list of the many publications where this work is puldfiahtber
detailed information can be found within the accompanying project reports.

GFLOWStage3 - Final summary 1



1.2 Previous studies

Some of the earliest work was conducteylFitzgeraldet al. (2000and focussed primarily on the quality of
groundwater in aquifers where concerns about faecal contamination and-goality groundwater being
supplied to Indigenous communities had been raised. Subsequent w@diys et al. (200focussednore

on quantifying groundwater supplies to better evaluate the future suitability and sustainability of existing
community groundwater supplies at nine communities. The findingBdyds et al. (2001)ighlighted the
immediate needor establishing a regnal water maagement plan across the province. The water plan was
first initiated a year later in 200PAPYWMP 200Q2which also included the establishment of theaf\gu
Pitjantjatjara Yankunytjatjara Water Management Council (APYWMC)

Following work bybodds et al. (200} Australian Groundwater Technologies (AGT) was commissioned by the
state water utility (SAWater) to undertake two groundwater supply sustainability assessments at key
Indigenous communities initially in 2008G T 200Band then a broadeassessment in 200AGT 2008Both
assessments were desktop analyses combining groundwater level monitoring, metered groundwater use and
climate data to assess the sustainability of individual community production bores. The key findings from
AGT (2008)vere that some of the community groundwater production botkat supportedkey northern
communities (Amata and Pukatja) were under stress and alternative groundwater supplies needed to be
sourced 6r use in the future.

The sustainability assessments bgAled to further extensive desktop studies across the entire Musgrave
Province, as well as geophysical surveys, drilling and multiple groundwater resource assessments at the
regional scale to improve the understanding of groundwater resources acrossntire erovince. The

@R OSNYYSyhd 2F {2dziK ! dza i NI £ A lin 2808, whicthificludeKtkeRnoritaridg W2 | {
and management of noprescribed groundwater resources to ensure their future sustainable use. Under

this plan Watt and Berens2011)produced the most comprehensiat that time)desktop evaluation of
groundwater resources in the Musgrave Provinthey concluded thathe key knowledge gaps included
estimates of groundwater storage, evaluations of potentiaugrdwater yield rats, estimates of volumes of
groundwaterfor abstraction and an understanding of the nature and volumes of groundwater recharge.

The evaluation byVatt and Berens (2011¢d to the initiation of some key field studies hganey et al.
(2013) Ley-Cooper andMunday (2013 Munday et al. (2013ndKretschmer and Wohling (20that aimed

to improve the understanding of important groundwater processes. sthdiesby LeyCooper and Munday
(2013)andMunday et al. (2013provided much improved hydrogeological mapping across the province by
collating and reinterpreting existing airborne geophysics and using this to develop an improved
hydrogeological map of the province. The studiet&gney et al. (20123ndKretschmer ad Wohling(2014)
involved targeted groundwater sampling for environmental tracers ahdmistry which identified the
presence of a regionacale groundwater flow system, as well as mapping and quantifying groundwater
recharge and flow. laddition, two fonours studies were undertaken into the sustainabi{i@raven 201R

and the hydrogeochemistifCustance 2012)f regolith-hosted aquifers in the region.

Since these regional scale studies, the search for alternative and sustainable community wates suapli
continued with the new regionadcale hydrogeological mapping bunday et al. (2018 underpinning

further targeted localscale workParsekian et al. (20)4uccessfully validated the improved hydrogeological
mapping byMunday et al. (201Bto idertify and better map a locadcale aquifer for one of the indigenous
communities using neagurface geophysics. In 2018pwles et al. (201)7successfully used the airborne
geophysics from additional interpretations of the regional aeromagnetic data urkksmtédy Mundayto
undertake targeted drilling of the fractured and weatherbddrock aquiferswhich resulted in 18 new
production wells being drilled and installed at seven Indigenous communities. The most recent work which
from a hydrogeology perspectiwgill be summarised in this report has involved the acquisition of a new
large-scale airborne electromagnetic (AEM) survey (Soerensen et al. 2018), as well as some targeted drilling
in part of a key palaeovalléZostar et al. 20)9The AEM survey summaatsinSoerensen et al2018 now

fills the large gaps between existing AEM surveys which when combined cover almost the entire Musgrave
Province. In 2018, drilling of the eastern side of the Lindsay East PalaeqGukar et al. 2019%vas
undertaken tocharacterise the depth, nature and hydrological connectivity of aquifers within palaeovalley
fill.
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1.3 Study area

The South Australian Musgrave Province forms partapystalline basement terrain thaxtends across the
common borders of South Australian,edtern Australian and Northern Territorffhe topography and
drainage of the Musgrave region is showrFigurel-1. The northern part of the region is occupied by the
rugged hilly terrain of the Mann and the Musgrave ranges with Mt Woodroffe reaching an elevation of 1435
m AHD (Australian Height Datum]he Birksgate and the Everard ranges occur to the south. The
topographical elevabns decrease to around 3§800m AHDtowards the south and the southeast of the

area where wide calcrete plains occur covered by aeolian deposits. The Great Victoria Desert to the south of
the northern ranges is covered by sand plains and dune f{@i@st and Berens 2011).

Climate for the sudy area is semarid to arid with a hot, dry desert climate, short cool to cold winters and
low, unreliable rainfal(Watt and Berens 2031 The mean temperature ranges from 32°C to 36°C in the
summer and drops to a mean of around 20°C in winter. Rhjpdittierns are spatially variable, with average
annualrainfall ranges from around 1§225mm, althoughrainfall is unpredictable,and averages can be
misleading.Rainfall occurrenceand intensity isepisodic Average annual evaporation excee8s00 mm,
resultingin the rapid evaporation of surfacgater runoff. Perennial surface water and connected drainage
systems are absent.

The geology of the Musgrave Province is complex, and for the area of interest ®RhOWStudy it has
been summarised bPawley and Krapf (2016The Provinceeomprises a region of crystalline basement
consisting mainly of the amphibolite and granuligeies gneisses intruded by madialtramafic dykes and
granitoids, and swarms of dolerite dykes.

= Localities
A Mt Woodroffe
! Groundwater well
Pukatia (Emabelta) | Mineral well
.Yunyannyn {Kenmore Park) — Ephemeral stream
D Hydrogeological control site
Study area

Mt Woodroffe
A

_Ulmwa
Roads
Sealed
Unsealed
Vehicular track

Ground elevation
g High 1435 m AHD
 Kaltitf(Fregon) Low 65 m AHD

5 N
Mimif LE A

Makiri Homeland L

Figurel-1. Regional study area located in thA&nangu Pitjantjatjara Yankunytjatjard_ands. Blue rectangle depicts
location of hydrogeological control site where drilling and sampling was conducted for the project.
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2 Keyproject output

2.1 Preliminary field investigations

2.1.1 WELL SURVEY AND DATABASE

A groundwate well survey (bore audit) was conducted between 10 and 20 October 2017 to identify and
confirm groundwater infrastructure (i.e. water wells) and the condition of such infrastructure to aid in
establishing monitoring and field investigation requirementstsas drilling and groundwater sampling.

Thesi  1SQa 3INRBdzyRgl GSNI RO o6l & SolesasSof 1iMa§ 2057 Rprgad aorosg | (1 S
the GFLOWStage3 study area. Work on the database included a review of all geological and drillers logs

as well as a review of well completion intervals. During the field survey it was not practical to visit every well
and access requirements were required to be specific.

The bore audit was undertaken by navigating to the identified well location usingé&hed GPS, where
the following well attributes were surveyed for 39 welsgure2-1):

Spatial coordinates (accuracy verification) using a diffeaggtobal positioning system (DGPS);
Ground elevation usindifferential global positioning systerdGP 3
Well casing condition (material, diameter, headworks, surface seal);
Cap identification;

Standpipe condition and cementing;

Reference point type anelevation (above ground level);

Depth to water;

Total well depth;

Current status and purpose of use;

Presence of logging devices;

Access constraintsind

Suitability for monitoring and sampling

=4 =4 =4 =4 -4 -8 -8 -f a8 e g

Multiple digital photographs describing the location arwhdition of the wellwere also obtained

Due to resourcing, budget and time constraints, sampling was not undertaken at this time as a routine
component of this audit, however, a pump was used opportunistically for sampling basic salinity if a
measuremenivas not recorded at all in the database.

The bore audit provided valuable information for planning of future field activities and input into numerical
groundwater modelling tasks as part of teFLOWStage3 project, including:

91 Verification of well loction and status for planning and design of drilling and sampling programs;

1 Water level data for developing potentiometric surfaces, to aid initial groundwater modelling and
the design of well drilling programs (i.e. design length and position of scresh); a

9 Identification of access issues/feasibility for future grotabsed activities such as geophysical
surveys and drilling operation.
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Figure2-1. Well survey (bore audit) conducted in the initial stage of tl&FLOWSStage3 project.
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2.2 Improved groundwater resource characterisation using airborne
electromagnetic methods

The project provided interpreted AEM coverage across the APY Lands, revegithgoficover and the
location of deep palaeovalley3he cover of the Musgrave Province, being more conductive than the
underlying basement rocks provides a good basis for using AEM data as a means for mapping its extent and
thickness. Fast, automated anobjective methodsthat employ machine learning approachdwmve
application for defining the basement morphology, and the regolith thickné&s.have usedhe Smart
Interpretation ) methodthat is a machine learning approach described by Gulbrandsah €017)The

results provide an indication of trends in cover variability.

The conductivity structure of the Musgrave Province has been defined through the processing and inversion
of two regional AEM data sets that were acquired by the South Austr@lemernment through the Goyder
Institute and the Geological Survey of South Australia as part d6theOWSStage3 project and the PACE

Cu initiative. Two timelomain AEM systems were employed in the regional surveytse fixed wing
TEMPEST High Momeand rotary wing SkyTE¥™ST Preliminary inversion results indicated that both
systemseffectively define the cover, which is relatively conductive, and thagdocation and geometrpf
buriedpalaeovalley systems in this area

Conductivitydepth intervals or interval conductivities were generated from the inversion results of both the
regional TEMPEST atite SkyTEM surveys, in &0 intervals from surface to 20@ depth. Displaying
inversion results as conductivitlepth imagedss a common way to visualise the spatial distribution of the
conductivity within a survey area. In areas with large topographical variations it can be beneficial to display
conductivities not only with depth but also as elevation intervals, accountinganations caused by the
topography Examplénterval conductivities for the two regional surveys at®wn overlaid on éirst vertical
derivative (VD of airbornemagnetic data mapHigure2-2). The intervals were gridded using kriging with a

cell size of 40@n.

A more detailed map (overlain on hydrogeological framework for part of the Lindsay East Palaeovalley)
provides more detailed information about the geometry thts site Figure2-3). The DH1 drilling site is
located on this main palaeovalley along the roadkrbKaltjiti/Fregon.
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Figure2-2. 50¢60 m interval conductivity image for the combined SkyTE¥f*STand TEMPESTigh momentairborne electromagneticsurveys overlain on 1stertical derivative
magnetic greyscale image. The more conductive aré&sls) shown in the combined images are commonly associated with a conductive transported fill sitting within deep
palaeovalleys that have incised along and across a predominagdgtwest orientated sd of fractures and faults (as indicated in the magnetics)

G-FLOWStage3- Final summary 7
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