This document provides a summary of rainfall and temperature (maximum and minimum) information for the Eyre Peninsula (EP) Natural Resources Management (NRM) region generated using the latest group of international global climate models. Information in this document is based on a more detailed regional projections report available at www.goyderinstitute.org.

Climate projections at a glance

The future climate of the EP NRM region will be drier and hotter, though the amount of global action on decreasing greenhouse gas emissions will influence the speed and severity of change.

Decreases in rainfall are projected for all seasons, with the greatest decreases in spring.

Average temperatures (maximum and minimum) are projected to increase for all seasons. Slightly larger increases in maximum temperature occur for the spring season.

By the end of the 21st century

- Average annual rainfall could decline by 10-20.9%
- Average annual maximum temperatures could increase by 1.8-3.3°C
- Average annual minimum temperatures could increase by 1.4-2.8°C

The region

The EP NRM region, adjacent to the western Spencer Gulf, spans north to south and east to west from: the Gawler Ranges to Port Lincoln, and Ceduna to the Nullarbor Plain. The Mediterranean/semi-arid climate transitions from a milder moist maritime climate, to hotter drier semi-arid climate northwards and inland.

The SA Climate Ready project

The Goyder Institute is a partnership between the South Australian Government through the Department of Environment, Water and Natural Resources, CSIRO, Flinders University, University of Adelaide, and the University of South Australia.

In 2011, the Goyder Institute commenced SA Climate Ready, a project to develop climate projections for South Australia. The resulting information provides a common platform on which Government, business and the community can develop solutions to climate change adaptation challenges.

The project has produced the most comprehensive set of detailed, local scale climate projections data ever available in South Australia. It covers rainfall, temperature, solar radiation, vapour pressure deficit and evapotranspiration.

For further information: Goyder Institute for Water Research
e: enquiries@goyderinstitute.org p: +61 8 8303 8952 www.goyderinstitute.org

The Goyder Institute for Water Research is a partnership between the South Australian Government through the Department of Environment, Water and Natural Resources, CSIRO, Flinders University, University of Adelaide and the University of South Australia.
How was the data generated?

The climate projection information presented here is based on selected future climate change scenarios, projected to occur under two emissions scenarios defined by the Intergovernmental Panel on Climate Change (IPCC). The climate projection information presented here is based on selected future climate change scenarios which the IPCC describe as “representative concentration pathways” (RCPs). The high emissions scenario referred to in this document is RCP8.5 and the intermediate emission scenario is RCP4.5.

The IPCC’s emissions scenarios are the product of an innovative collaboration between integrated assessment modellers, climate modellers, ecosystem modellers as well as social scientists working on emissions, economics, policy, vulnerability and impacts.

Detailed, local scale data were generated for the region using 15 Global Climate Models (GCM) and applying a technique called “downscaling” at selected weather stations.

While using 15 GCMs provides a broader range of possible future climate changes, this document uses data from a subset of the 6 “best” GCMs. These models were chosen because they were found to perform better at representing climate drivers that are particularly influential on rainfall in South Australia, such as the El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole.

Further information on methods, data and outputs is available in the full regional report available at www.goyderinstitute.org.

Emissions scenarios

The two emissions scenarios used throughout this document are the intermediate “stabilisation” scenario called RCP4.5 and the “high emissions” scenario RCP8.5. Currently, global emissions of greenhouse gases are tracking at or above the RCP8.5 trajectory.

How to interpret the graphs in this document

The red line indicates the high emissions scenario (RCP8.5) which arises from little effort to reduce emissions and represents a failure to curb warming by 2100.

The blue line indicates the intermediate emissions scenario (RCP4.5) which would stabilise the carbon dioxide concentration by 2100.

The line indicates the average while the shaded area indicates the range.
Climate modelling suggests that average annual rainfall could decline by up to 10-20.9% by the end of the 21st century in the EP NRM region.

Average annual rainfall is projected to decline under both intermediate emissions (RCP4.5) and high emissions (RCP8.5) scenarios (Figure 2a).

By 2030 projected rainfall reductions are similar under both emissions scenarios (Figure 2a). However, by the end of the century, projections diverge, with average rainfall declines more than twice as much under high emissions (Figure 2a). There is considerable overlap in the range of projections across the coming century.

Seasonally, there is variation in both the averages and range of declines projected. Summer, autumn and winter declines by 2070, for example, are similar between emission scenarios, with the smallest declines occurring in winter. In contrast, the largest declines occur in spring, with a 23.4% and 33.5% decline under intermediate and high emissions, respectively (Figure 2b).

Furthermore, by 2070, under intermediate emissions summer and winter may at times experience wetter years than the baseline average (Figure 2b). Under high emissions, however, summer and autumn may have wetter years. Both emissions scenarios project a consistently drier spring.
Climate modelling suggests that average maximum temperatures could increase by up to 1.8-3.3°C by the end of the 21st century in the EP NRM region.

Under intermediate emissions (RCP4.5) average maximum temperatures could increase by 0.8°C by 2030 and 1.8°C by 2090 (Figure 3a). Changes are even greater under high emissions (RCP8.5), which projects an increase of 1.0°C by 2030 and 3.3°C by the end of the century.

While the difference between emissions scenarios is small early in the century, by the end of the century maximum temperature under high emissions is nearly double than under intermediate emissions (Figure 3a).

Seasonally, increases in average maximum temperatures are more variable, though the pattern of change is similar between emissions scenarios. Across all seasons, temperatures are greater under high emissions, by 0.9°C-1.1°C (Figure 3b).

Under both emissions scenarios, warming in the spring is projected to be greater than any other season (Figure 3b), consistent with this season experiencing relatively larger projected drying than the other seasons (Figure 2b).

The projected ranges about the averages show little overlap between emissions scenarios and indicate greater variation under high emissions, and greater variation in spring and summer than autumn and winter (Figure 3b).
Climate modelling suggests that average annual minimum temperatures could increase by up to 1.4-2.8°C by the end of the 21st century in the EP NRM region.

Under the intermediate emissions scenario (RCP4.5), average minimum temperatures will rise by 0.7°C by 2030 and up to 1.4°C by 2090. Under the high emissions scenario (RCP8.5) a rise of 0.9°C is projected by 2030 and 2.8°C by the end of the century (Figure 4a).

Minimum temperatures are consistently greater under high emissions. By the end of the century, the projected changes under high emissions are double those under intermediate emissions.

The higher spring warming seen in the maximum temperature projections are not repeated in the minimum temperature projections, with autumn generally experiencing slightly more warming than the other seasons.

By 2070, for example, autumn minimum temperature increases are projected to be 0.2°C-0.5°C greater than other seasons under high emissions, and under intermediate emissions, are the same as spring but greater than summer and winter (Figure 4b). Changes in minimum temperatures are projected to be lowest in winter under both emissions scenarios (Figure 4b).

Like the maximum temperature change projections, the value ranges show low overlap between emissions scenarios, with the difference increasing over the years (Figure 4a). The degree of variation above and below the average was more similar within each emissions scenario, and higher variation occurred in summer and autumn than winter or spring (Figure 4b).
How to access the detailed data?

Detailed data sets are available for weather stations in each of the NRM regions in South Australia through the Enviro Data SA website https://data.environment.sa.gov.au. Users of the site can download data through a search tool that allows for filtering of data by NRM region, GCM and RCP. Anyone interested in using the detailed data sets should first read the User Guide, which is located on the Enviro Data SA website.

Further information links

The Goyder Institute website includes further information about project outputs, including:

- regional summary documents for all NRM regions in South Australia
- case studies on how the climate projections data can been used to inform decision making
- a detailed report on climate projections for South Australian NRM regions (Charles and Fu 2014).

Acknowledgments

This document is a synopsis of data drawn from the following report:

This report should be consulted for further information regarding methods and data on other climate variables.

Glossary

Climate change: A change in the state of the climate, identified by changes in the mean and/or variability of its properties, that persists for long periods (typically decades or longer); driven by natural and anthropogenic processes.

Climate change projections: The simulated response of the climate system to one of the emission scenarios (RCPs) and generally derived using climate models.

Downscaling: Downscaling is a method that derives local to regional scale information from larger-scale (e.g. national or global) models or data analyses.

GCM (Global Climate Model): Comprehensive numerical models of the climate system based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for some of its known properties. Used to study and simulate climate.

IPCC (Intergovernmental Panel on Climate Change): Scientific body providing an internationally accepted authority on climate change.

RCPs (Representative Concentration Pathways referred to here as emissions scenarios): Scenarios that include time series of emissions and concentrations of the full suite of greenhouse gases and aerosols and chemically active gases, as well as land use/land cover.

* Definitions are based on the glossary from the Intergovernmental Panel on Climate Change Fifth Assessment Report, Working Group 1 Report.